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A valid fluid equation of state �EOS� must satisfy the thermodynamic conditions of consistency �derivation
from a free energy� and stability �positive sound speed squared�. Numerical simulations of compressible fluid
flow for realistic materials require a tabular EOS, but typical software interfaces to such tables based on
polynomial or rational interpolants may enforce the stability conditions, but do not enforce the consistency
condition and its derivatives. The consistency condition is important for the computation of various dimen-
sionless parameters of an EOS that may involve derivatives of up to second order which are important for the
development of more sensitive artificial viscosities and Riemann solvers that accurately model shock structure
in regions near phase transitions. We describe a table interface based on the tuned regression method, which is
derived from a constrained local least-squares regression technique. It is applied to several SESAME EOS
showing how the consistency and stability conditions can be satisfied to round-off while computing first and
second derivatives with demonstrated second-order convergence. An improvement of 14 orders of magnitude
over conventional derivatives is demonstrated, although the method is apparently two orders of magnitude
slower, due to the fact that every evaluation requires solving an 11-dimensional nonlinear system. Application
is made to the computation of the fundamental derivative.
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I. INTRODUCTION

The two most common techniques for modeling shock
waves in the numerical simulation of compressible flows are
artificial viscosity �1� and the Riemann solver �2�. Over the
years, these have seen many enhancements and variations.
For comprehensive summaries, see �3–5�. Unfortunately, the
Riemann solver is only well developed for the ideal gas
equation of state �EOS�. Some attempts have been made for
more complicated analytic EOS, such as the Mie-Gruneisen
EOS �6,7�, but real materials in general have such a compli-
cated EOS that it can only adequately be expressed in a
table, for which there is no Riemann solver yet published.
The SESAME library �8,9�, which is widely used at Los Ala-
mos National Laboratory and has been distributed through-
out the world, contains tabular EOS for many elements and
will be the source of our examples. Our treatment in this
paper is specific to the choice of variables used in SESAME

but it may be straightforwardly modified for others.
The mathematical description of the behavior of shock

waves in real fluids with an arbitrary equation of state was
described in detail in �10�. Four dimensionless quantities are
important:
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The symbols P, V, T, and S represent pressure, specific vol-
ume, temperature, and entropy, respectively. The quantity �
is the adiabatic exponent, � is the Grüneisen coefficient, g is
the dimensionless specific heat, and G is the fundamental
derivative. The quantities � and G represent the slope and
curvature of isentropes in the P-V plane, respectively. The
quantity G is most important for the determination of shock-

wave structure. When G�0, shocks occur in compression;
when G�0, shocks occur in rarefaction. In a numerical
simulation this information must be incorporated into the
switch used to turn on artificial viscosity or in the solution
constructed by a Riemann solver. First- and second-order
approximate Riemann solvers for real EOS would make ex-
tensive use of G. Clearly, in order to construct these solvers
we must first know how to compute physically realistic val-
ues of G from tables. The derivative � is also used in numeri-
cal solution methods for shock-driven flows to determine
time steps that satisfy stability conditions.

Assume for the moment we have internal energy E ex-
pressed as a function of specific volume V and entropy S.
The thermodynamic definitions of pressure P and tempera-
ture T are
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This is the thermodynamic consistency condition, and it
amounts to a differential equation that a valid equation of
state must satisfy. It is equivalent to the statement that the
equation of state is derivable from a thermodynamic poten-
tial, in this case the energy. In the SESAME tables, pressure
and energy are expressed as functions of temperature and
density. With temperature and density independent, the ap-
propriate thermodynamic potential is the Helmholtz free en-
ergy, F=E−TS, which gives

P = − � �F

�V
�

T

, S = − � �F
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�

V

, �4�

from which we conclude
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Using the second law of thermodynamics, condition �5� takes
the form

P = T
�P
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+ �2�E

��
. �6�

Thermodynamic stability requires that the Hessian of E be
jointly convex in V and S, which leads to the conditions
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With temperature and density independent these are satisfied
if

�E

�T
� 0,

�P

��
� 0. �8�

Equations �6� and �8� are thus constraints on any derivatives
one might construct from the table data for P and E in order
for them to be physically realistic. Note that if the pressure
and energy are smooth, then the derivatives of Eq. �6� with
respect to temperature and density are valid second-order
constraints:
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The consistency condition can be critical in the evaluation
of the quantities in Eq. �1�. For example, the computation of
G involves second derivatives, so Eqs. �6� and �9� both need
to be satisfied to make G physically realistic. With tempera-
ture and density independent the expression for G indepen-
dent of the consistency conditions is

�− T2ETTPT
3 + TETPT
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2�T�PT
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where the notation AB=�A /�B is used. When the consistency
condition and its derivatives with respect to temperature and
density are solved for PT, PT�, and PTT and applied to �10�
we obtain

��3ET
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where TS�=�S /���T=�2E�− P. These are radically different
expressions if the consistency constraints �6� and �9� are not
satisfied.

That satisfaction of these constraints is not automatic for
traditional derivative evaluation schemes is illustrated by

Table I, which shows the average absolute value of the loga-
rithmic scale of the normalized consistency error, ls�	�
	sgn 	 ln �1+	�, where

	 = �− P + T
�P

�T
+ �2�E

��
�
��P� + T� �P

�T
� + �2� �E

��
�� ,

�12�

using several common methods �11,12� for computing de-
rivatives of SESAME table 2984 for molybdenum. Since pres-
sure and energy vary by 6 and 12 orders of magnitude, re-
spectively, in this example, the normalizing denominator is
necessary for a fair assessment of the error. The table grid
was 37
65, and the evaluation grid was 75
135. The stan-
dard deviation for all methods was approximately 1.0

10−15. Thus, at most points, traditional derivatives match
the consistency condition to a little less than three decimal
places. The minimum value of �E /�T was
−0.198 Mbar cm3/K and of �P /�� was −33.2 Mbar cm3/g
using birational derivatives. These are well below the mini-
mum allowed values of zero according to �8�. The other
methods showed similar results. Some software interfaces
have options to enforce these positivity constraints �11�, but
it is not done in a way which simultaneously guarantees sat-
isfaction of the consistency constraints. In the rest of this
paper, we elucidate a technique to do precisely this.

II. NUMERICAL METHODS

The tuned regression estimator �TRE� method �13� allows
us to estimate derivatives of tabular EOS data while simul-
taneously guaranteeing �6� and �8�. We shall summarize
briefly the basic ideas of that paper and refer the reader
thereto for more background, generality, detail, and ex-
amples. Here, we shall just remark that it grew out of the
application of the statistical method of local regression esti-
mators �14� to the numerical solution of differential equa-
tions.

Let us suppose we have data points in two dimensions
�yi�i=1

N �R2 with associated m-dimensional data values
�ui�i=1

N �Rm which we presume to sample a continuous
m-valued function of two variables u :R2→Rm. Suppose we
want to estimate n derivatives of u at an arbitrary point x

TABLE I. Average absolute value of the logarithmic scale of the
normalized consistency error �12� for various derivative methods in
common use. Bilinear, biquadratic, and birational methods are de-
scribed in �11�. The “bihermitian” method is the bicubic hermitian
method described in �12�. The actual software package of �11� was
used for the first three methods, and the author’s implementation
was used for the last.

Method Error

Bilinear 0.00665

Biquadratic 0.00240

Birational 0.00175

Bi-Hermitian 0.00107
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= �x1 ,x2��R2. First, we describe traditional polynomial in-
terpolation methods, in a formalism that will prepare us for
local and tuned regression estimation.

Suppose the data points make up a Cartesian grid. Let a
column vector of n monomials p :R2→Rn be chosen from
Table II. Of course, n will be restricted to 4, 9, or 16. The
derivative corresponding to a monomial �xi�a�xj�b is
�a+b / ��xi�a��xj�b. Let Z be a subset of the data points of size
n consisting of the most-centered subgrid that encloses x of
2
2, 3
3, and 4
4 points for the bilinear, biquadratic,
and bicubic methods, respectively. Denote the elements of Z
by �z1 , . . . ,zn�, and let k be a map between indices of points
in Z and data points such that yk�i�=zi for i=1, . . . ,n. We
wish to approximate u�x� by û�x�=�p�x�, where � is a m

n matrix such that the data are exactly interpolated. Let
Q= �p�z1� , . . . , p�zn��, an n
n matrix, and v
= �uk�1� , . . . ,uk�n��, an m
n matrix. We require �Q=v, and
thus �=vQ−1. For any integer m, and any m-valued function
f�x�, let Jf�x�= �f ,�f /�x0 ,�f /�x1 , . . . � be an m
n matrix
whose columns are the n derivatives corresponding to the
monomials in p, which we call the jet matrix. Then Jû�x�
=�Jp�x�. If ui=�p�yi�, where � is a constant m
n matrix,
then v=�Q and �=�, and polynomial interpolants are said
to reproduce the basis p�x�. It is well known that they con-
verge with order n for smooth data, but produce oscillations
near discontinuities. The great advantage of polynomial in-
terpolation is speed, as the Q matrix depends only on the yi
and need be computed only once for all x.

The tuned regression method is a mesh-free method and,
as such, notions of nearness are determined by the value of a
real-valued weight function w�x ,yi�, instead of a grid. The
weight function is generally smooth, centrally peaked about
yi, and has compact support. When w�x ,yi� is large, x is close
to yi. When w�x ,yi� is small, x is far away from yi. Although
the grids used in the SESAME tables are nonuniformly spaced
Cartesian, mesh-free techniques may be applied to them. In
this paper, we use the weight function

w�x,yj� =
N1

hj
1

N2

hj
2 B4� yj

1 − x1

hj
1 �B4� yj

2 − x2

hj
2 � , �13�

where B4 is the cubic B-spline, defined by

B4�z� = 1 − 3
2z2 + 3

4 �z�3, �z�  1,
1
4 �2 − �z��3, 1 � �z�  2,

�
and N1 and N2 are constants such that �w�x ,y�dx=1. We use
a vector smoothing length hj = �hj

1 ,hj
2�T.

Now let Jp�x� represent the n
n jet matrix of p. It has
been verified for a large set of monomial bases that the
shifted basis has the form

p�x,yi� 	 Jp
−1�x�p�yi� = Dp�yi − x� , �14�

where D is a constant diagonal matrix. Suppose that ��x� is
a m
n matrix whose columns are derivative estimates of u,
the same derivatives that are used in Jp�x�. Then ��x�p�x ,yi�
is the Taylor series expansion from x to yi. Now suppose that
we want ��x� to satisfy a set of differential constraints at
x—say, D���=0. Through the implicit function theorem, this
implies that a subset of � can be eliminated or, equivalently,
we can change variables to a smaller number of variables �
such that �=E��� and D(E���)=0. Our Taylor series then
takes the form E(��x�)p�x ,yi�. The inverse mapping is given
by �=F��� with E(F���)=� when D���=0 and F(E���)
=�. We measure the average error of the Taylor series ex-
pansion from x to all nearby points yj with

R�x� = �
j

�uj − E„��x�…p�x,yj��2w�x,yj� . �15�

If we optimize R�x� with respect to ��x� by solving
�R /��=0, we will obtain optimal estimates of u�x� and all
of its derivatives through ��x�. The constraints will be satis-
fied to round-off by construction: D(��x�)	0. This consti-
tutes the general method of tuned regression.

The case where D is empty, or E���=�=�, is known as
the local regression estimator �LRE� and has an explicit so-
lution

��x� = �
i

ui�i�x�T, �i�x� = P−1�x�p�x,yi�w�x,yi� ,

P�x� = �
i

p�x,yi�p�x,yi�Tw�x,yi� . �16�

It is well studied in the statistics literature �14�, and it is easy
to show it has the form ��x�=��x�Jp�x�, similar to polyno-
mial interpolants, and it has the reproducing property, just
like polynomial interpolants and the moving-least-squares
�MLS� estimators used in the engineering literature �15�. In
fact, the zeroth-derivative estimate of the LRE is identical to
that of MLS �13�. The convergence rates for x�R for the �th
derivative are n−�+1 for n−� odd and n−�+2 for n−�
even �14�. The moment matrix P�x� in Eqs. �16� becomes
singular when the data points in the neighborhood of x be-
come coplanar or there are fewer than n of them, so the

TABLE II. Sets of monomials used for several traditional interpolation schemes �11,12�. The biquadratic
method here includes three extra terms of cubic and quartic order than that described in �11�, which might
properly be termed the “quadratic” method.

Method Monomials

Bilinear �1,x0 ,x1 ,x0x1�
Biquadratic �1,x0 , �x0�2 ,x1 ,x1x0 ,x1�x0�2 , �x1�2 , �x1�2x0 , �x1�2�x0�2�
Bicubic �1,x0 , �x0�2 , �x0�3 ,x1 ,x1x0 ,x1�x0�2 ,x1�x0�3 , �x1�2 , �x1�2x0,

�x1�2�x0�2 , �x1�2�x0�3 , �x1�3 , �x1�3x0 , �x1�3�x0�2 , �x1�3�x0�3�
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smoothing length must be made large enough to prevent
these two situations. If it is too large, however, the procedure
becomes expensive, as more neighbors are included in the
sums. The proper selection of smoothing length for the LRE
is a fine art discussed in �14�. It is not known exactly how
much of that discussion applies to the TRE, but in practice, it
is seen that at least n neighbors are also required. It is also
wise to monitor condition numbers in the course of solution.

The present application makes use of the following spe-
cializations: x= �T ,��T, yi= �Ti ,�i�T, u= �E , P�T, and

p = �1,T,�,T2/2,T�,�2/2�T,

� � �E �E/�T �E/�� �2E/�T2 �2E/�T � � �2E/��2

P �P/�T �P/�� �2P/�T2 �2P/�T � � �2P/��2� ,

D��� = �1,0 − T�1,1 − �2�0,2 = 0,

F��� = ��0,0, . . . ,�0,5,�1,1, . . . ,�1,5�T = � ,

E��� = � �0 �1 . . . �5

T�6 + �2�2 �6 ¯ �10
� = � . �17�

We have eliminated �1,0, which represents the pressure,
through D=0, to define �. The evaluation and optimization
of Eq. �15� is aided by the observation that it can be rewritten
as

R = Tr W + Tr�PETE − 2UTE� , �18�

where

P = �
i

pipi
Twi, U = �

i

uipi
Twi, W = �

i

uiui
Twi, �19�

and pi= p�x ,yi� and wi=w�x ,yi�.
This prescription addresses the consistency condition �6�,

but the stability conditions �8� require further attention. We
define three possible differential constraints to use:

�1,0 − T�1,1 − �2�0,2 = 0, �20a�

�0,1 = 0, �20b�

�1,2 = 0, �20c�

which represent the consistency and stability conditions, and
adopt a multipass algorithm to enforce all constraints simul-
taneously:

Algorithm 1
�i� Try �20a� everywhere.
�ii� Where �0,1�0 in the result of �i� apply the combina-

tion of �20a� and �20b�.
�iii� Where �1,2�0 in the result of �i� apply the combina-

tion of �20a� and �20c�.
�iv� Where both �0,1�0 or �1,2�0 in �i�, �ii�, or �iii�,

apply the combination of �20a�–�20c�.

For the SESAME tables examined to date the number of loca-
tions where �ii�–�iv� are required is very small. The tech-
nique results in the values of �0,1 and �1,2 being clamped to

zero in regions where passes �i�–�iii� cause them to be nega-
tive. In the software, one needs to code four possibilities for
E corresponding to the combinations in passes �i�–�iv�. For
the four different passes we solve constrained systems with
��1,0�, ��1,0 ,�0,1�, ��1,0 ,�1,2�, and ��1,0 ,�0,1 ,�1,2� elimi-
nated, respectively, which results in solving 11
11, 10

10, and 9
9 systems, respectively. This illustrates a key
feature of tuned regression: by eliminating some derivatives,
we solve a smaller system with enhanced accuracy. The pen-
alty is that the smaller system is more complicated.

Both local regression and tuned regression in regions
where only the consistency constraint is enforced produce
approximations with smoothness equal to that of the weight
function.

A Mathematica �16� program has been written to symboli-
cally optimize Eq. �18� for arbitrary P, U, W, and E. It then
generates code which is spliced into a C++ library called
LORELI �local regression library� which is used to operate on
the SESAME data. The Appendix exhibits the expressions for
R generated by this Mathematica program in terms of the
matrices in Eqs. �19� when the various combinations of con-
straints in Eqs. �20� are active.

III. EXAMPLE: ANALYTIC

Let Ju= �u ,�Tu ,��u ,�T
2u ,�T��u ,��

2u�, and suppose that Ju

=�Jp and D�Ju�=0. That is, u is a quadratic function that
exactly satisfies the consistency and stability conditions.
Such an example is given by

u = �E

P
� = �− 1 + T + � + T2

− T + T� + �2 � , �21�

with

� = �− 1 1 1 2 0 0

0 − 1 0 0 1 2
� . �22�

Now suppose that ui=u�yi�=�p�yi�. Then,

R�x� = �
i

��p�yi� − E„��x�…Jp
−1�x�p�yi��2w�x,yi� �23�

is minimized if �=F�Ju�, because E(��x�)=Ju�x�=�Jp�x�
and R is identically zero. In other words, tuned regression
possesses the reproducing property just like polynomial in-
terpolation and local regression: a polynomial solution of the
differential constraints evaluated at discrete points �yi� will
be exactly reproduced at an arbitrary �T ,��, to round off, and
can be used by a software implementation as a verification
tool. The LORELI library mentioned above has been so
checked on this example and does indeed reproduce to round
off. On the basis of these results we surmise that the tuned
regression method for SESAME data is at least third-order
accurate. There is a formal proof, but its presentation is out
of scope here; however, numerical examples below will con-
firm it.

IV. EXAMPLE: OXYGEN

We choose SESAME table 5011 for oxygen at low tempera-
tures as our first example because the 23
51 grid is fairly
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uniform. Most SESAME tables have grids that are exponential
in character to handle the many orders of magnitude varia-
tion of temperature and density required. This leads to ill-
conditioned matrices in the TRE solution process and re-
quires special treatment as described below. Table 5011,
however, does not present this problem. On a 45
103 grid
TRE agrees well with the input data and produces no dis-
cernable difference to the eye. Figure 1 shows the pressure
derivative with respect to density, and a prominent feature is
the flat annulus at low temperature. This is a region where
the stability constraints were active and the algorithm did
what it was supposed to. The zeroth-derivative estimates
were not seen to echo this feature to the eye, which illustrates
how the derivatives are estimated independently in the TRE.
The estimate of the derivative is not the derivative of the
estimate, as it is in finite-element or spectral methods. The
two do converge, however, as the data become dense and the
smoothing length goes to zero. The value of the un-
normalized consistency error was everywhere less than 1.0

10−13, which is close to round off, as promised. Figure 2
shows the relative error between the TRE result and the input
table values when the input and output grids are identical.
There is good agreement except at low temperatures where
the constraints become active.

V. LOGARITHMIC FORM

As mentioned above, the exponential grids present in
many SESAME tables present numerical difficulties, so a
method must be devised to treat the ill-conditioned matrices
�2R /��2 that appear in the Newton solver for the equations
�R /��=0. These occur because the wide range of powers
that appear in the moment matrix P�x� in Eq. �18� get dras-
tically out of balance when applied to very large numbers.
For example, assume 8 decades of range in table coordinates
and 45 points, which gives a ratio of about 1.5 in the size of
successive intervals. Adjusting h so that there are 49 neigh-
bor points it is easy to verify the condition number of P
�1018 when x�104 and �1025 when x�106. One way to
restore good conditioning is to use a preconditioner in the

solver, which is under investigation. Another way is to loga-
rithmically scale the variables. To scale the independent vari-
ables we use the following transformation:

� = ln T, r = ln �, 	 = E� . �24�

In terms of these variables, the consistency and stability con-
ditions become

P + 	 =
�P

��
+

�	

�r
, �25a�

�	

��
� 0, �25b�

�P

�r
� 0. �25c�

These we refer to as semilog constraints. It is the simplest
form of the consistency condition and is linear, just like the
original consistency condition, and thus requires only one
11
11 linear solve. This coordinate change was found to
work for a few tables, but a further step was required to get
satisfactory behavior, because even though the new grid is
not exponential, the data for pressure and energy have be-

FIG. 1. TRE result for �P /�� using SESAME EOS table 5011 for
oxygen with consistency and stability constraints active. Note the
flat annulus at low temperature caused by activation of the stability
constraint �box�. Units are K and g/cm3.

FIG. 2. Base-10 logarithm of absolute value of the error of the
tuned regression estimate for oxygen table 5011 when the input grid
equals the output grid. �a� Energy. �b� Pressure.
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come exponential, and the problem of ill-conditioned matri-
ces still appears. We now transform the dependent variables
by means of

	s = min 	 − 	0, Ps = min P − P0,

� = ln�	 − 	s�, � = ln�P − Ps� . �26�

The new energy and pressure minima 	0 and P0 are arbitrary
but must be positive. In the rest of this paper we set them
equal to 1 so that the quantities � and � have a minimum
value of zero and are always positive otherwise. The larger
we make 	0 and P0, the flatter the transformed data surfaces
become in the large. The consistency and stability conditions
for � and � are

exp���� ��

��
− 1� + exp���� ��

�r
− 1� = Ps + 	s, �27a�

��

�r
� 0, �27b�

��

��
� 0. �27c�

Notice now that the consistency constraint is nonlinear,
whereas previously it was linear. We refer to these as log-log
constraints. We use the LRE solution �16� as the initial con-
dition for a Newton solver or steepest-descent solver to op-
timize R. In practice, we typically see convergence in three
to five Newton iterations with this initial condition. The same
four-pass strategy of Algorithm 1 for enforcing the stability
constraints applies.

The LORELI library thus contains 12 separate encodings of
the residual function and its derivatives: for each type of
constraint �flat, semilog, and log-log�, there are four versions
corresponding to the combination of consistency and stabil-
ity constraints listed in the four passes following Eqs. �20�.
The Appendix exhibits these residual functions.

The expressions for the dimensionless derivatives when
logarithmic transformations are employed are given by

� =
e��e�−���

2 + �r���
�Ps + e����

,

� =
e�−���

��

,

g =
e−��Ps + e��

��

,

G = e−��e2�r+���2���� − ������
3 + 3er+�+�����r��

2

+ e2���r + �r
2 + �rr���

3 − e���
2���− 2e2r+����

+ �e2r+� − 2e� + 2er+� + 2er	s + e2rPs − 3er+��r���

+ er+���r��/�2��
2�e���

2 + e��r���� . �28�

The reciprocal factors of �� and ��
2 become significant if the

specific heat becomes small as discussed below. The expres-

sion for G makes use of the consistency constraint �27a�. One
could further incorporate its derivatives with respect to � and
r:

e−��e���� − ��
2 − ���� − e����r − 1��� + ��r�� = 0,

e−r�− e���r��� − 1� + ��r� − e��− �r + �r
2 + �rr�� = 0,

but the derivation of the log-log TRE method would have to
be modified to add these two equations as constraints to
those of Eqs. �27�. As it stands, the expression for G in Eqs.
�28� is consistent with the log-log TRE method implied by
Eqs. �27� above.

VI. EXAMPLE: MOLYBDENUM

The log-log TRE method was applied to SESAME table
2984 for molybdenum and the results are shown in Fig. 3.
The input grid size was 37
65, the output grid was 75

135, and once again there was no discernable difference to
the eye between the two. The normalized log-log consistency
error, given by

�e� + e� + 	s + Ps − e��� − e��r� � �e� + e� + �	s� + �Ps�

+ e����� + e���r�� , �29�

was smaller in magnitude than 2
10−16 at all points as re-

FIG. 3. Results of the log-log TRE on table 2984. 75
135 grid.
�a� Logarithm of shifted energy. �b� Logarithm of shifted pressure.
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quired and is 14 orders of magnitude smaller than the values
of Table I obtained by traditional derivatives, a substantial
improvement. The condition number of the final iteration of
the Newton solver at each evaluation point was everywhere
less than 105, and the number of Newton iterations required
to converge to a tolerance of 1.0
10−13 was at all points
between one and four iterations, a very reasonable number
for such a nonlinear problem. The condition numbers are
rather high, but it appears possible to reduce them consider-
ably by a simple scaling procedure which may be reported in
subsequent publications.

The dimensionless quantities of Eqs. �28� were computed
using the TRE derivatives. At high temperatures, the values
of � and G approach the theoretical values for monatomic
ideal gases of 5/3 and 4/3, respectively, which gives some

confidence to the calculations. On the other hand, at lower
temperatures, there seem to be rather large divergent regions
which correlate well with the flat regions at lower tempera-
ture in the plot of �� /�� in Fig. 4 which have low values
�1.0
10−3�. This is significant because the expressions for
�, �, and g in Eqs. �28� have �� /�� in the denominator and
G has ��� /���2. To test that this is the cause of the divergent
regions, the dimensionless derivatives are multiplied by the
appropriate power of �� /�� and plotted in Fig. 5. The diver-
gent behavior has been mostly eliminated, and in the plot of
� one can see the outline of several phase boundaries. At low
T and high � we expect to find the solid phase, and at low T
and low � we expect to find the mixed phase. In these two
phases, the theory leading to the definition of the dimension-
less derivatives is incomplete because it does not include the
effects of deviatoric strains or stresses and thus nonsensical
results may be inescapable. Also, there are known jump con-
ditions on � and � that may come into play across phase
transitions, and these have not been enforced. One of the
main points of all these calculations is the determination of
the sign of G, which is negative mostly in the mixed-phase
region, so the ability to provide reliable guidance to numeri-
cal methods for shock waves in these regions is clouded. In
light of these observations, it seems an appropriate approach
is to include the explicit phase boundaries in the EOS evalu-
ator and make reasonably correct estimates of the dimension-
less derivatives when they are crossed. It is also possible that
some of the divergent behavior seen with the TRE is caused
by numerical difficulties in early iterations of the Newton
solver, and this should be investigated.

Figure 6 shows the � calculated by the birational method

FIG. 4. �� /�� from the log-log TRE on table 2984.

FIG. 5. Dimensionless derivatives by the log-
log TRE on table 2984 multiplied by �� /�� or its
square. �a� Logarithmic scale of �� /�� �. �b�
Logarithmic scale of �� /�� �. �c� Logarithmic
scale of �� /�� g. �d� Logarithmic scale of
��� /���2 G.
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of the EOSPAC library �11�, which does not contain any di-
vergent regions like the TRE result. Figure 7 shows a com-
parison of � by birational and TRE at three different tem-
peratures, roughly 2 eV, 1 keV, and 100 keV. In general, for
positive ln �, the two agree fairly well, except at the high-
density boundary of the table. At the highest temperatures,
both results approach the theoretical value for an ideal gas.

For negative ln �, the two results are always in disagreement.
Perhaps this is because the constraints are more active in that
region. This too should be further investigated.

To compare the computational cost of each method, a grid
of 750
1350=1 012 500 points was constructed. The
EOSPAC birational evaluation on a 1.7-GHz Pentium IV sys-
tem took 5.7 sec. The time for LRE was 172 sec, which in-
volved neighbor finding using a general two-dimensional
binning algorithm and solving and performing one 6
6 lin-
ear solve. The log-TRE method doing a single 11
11 linear
solve took 249 sec, and the log-log-TRE method doing mul-
tiple 11
11 solves took 634 sec, which are 40 and 100
times slower than EOSPAC, respectively. This is disappoint-
ing, but not unexpected, because in addition to the linear
solves involved, the algebra for the TRE is much more com-
plicated than for EOSPAC or even the LRE. In practice, this
computational cost can be avoided by evaluating all deriva-
tives of an EOS on a fine grid and storing them for later
evaluation by normal means of interpolation, such as the
LRE. Presumably the consistency condition would not be
violated too much. This too needs further investigation. It
must be observed that a linear TRE formulation is possible
which would guarantee the consistency condition and in-
volve only a 5
5 solve. Presumably, this would be competi-
tive with the LRE and EOSPAC from a performance view-
point, but one would not be able to use it to compute the
fundamental derivative, which requires a quadratic TRE at a
minimum.

The LORELI implementation of the log-log TRE was ap-
plied to tables for copper �3333�, aluminum �3719�, and tin
�2160� with similar results, except for some anomalous di-
vergences in one corner which seem to be due to a poor
choice of smoothing length. When the smoothing length is
too small, there are too few neighbors, and the LRE or TRE
methods develop ill-conditioned matrices. It becomes an is-
sue near a table boundary because there are fewer neighbors
than in the interior. If the smoothing length is too large, it
may not be possible to satisfy the constraints with finite val-
ues. For the LRE there is a fairly well-developed methodol-
ogy for choosing the smoothing length, but more research is
needed to do the same for the TRE.

The molybdenum table 2984 does not appear to contain
Maxwell constructions for the removal of van der Waals
loops which lead to discontinuous derivatives. When the log-
log TRE method is applied to tables that seem to have Max-
well constructions, such as gold �SESAME 2700�, there are
severe convergence problems in the vicinity thereof. This
may be because second-order interpolation methods gener-
ally sustain oscillations in the vicinity of discontinuities and,
perhaps because of the exponentials in the TRE method,
these oscillations cause serious ill conditioning in the solv-
ers, both Newton and steepest descent. Some tables seem to
have apparently arbitrary abrupt transitions at the edges
which also cause a similar problem. These tables may require
more physical adjustments at the edges before the TRE
method is robust on them. Clearly the issue of Maxwell con-
structions requires more research. Perhaps they can be de-
tected, by a linear LRE estimate, for example, which always
seems to be monotone �although a proof is unknown to the
author�, and then a separate technique applied. It is also pos-

FIG. 6. Plot of � using EOSPAC derivatives for table 2984.

FIG. 7. Comparison of EOSPAC and TRE values of � at T
=2 eV �a�, 1 keV �b�, and 100 keV �c�.
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sible that a linear TRE technique would handle such discon-
tinuities, in the same way that the linear LRE seems to be
robust with respect to discontinuities. These speculations are
left for future investigations.

VII. CONVERGENCE AND ACCURACY

To test convergence of the TRE method, we use the fol-
lowing biquartic EOS:

E = ��3 + �2 + � + 1��T4 + T3 + T2 + 1� + T ,

P = − 1
6�2�3�2 + 2� + 1��2T4 + 3T3 + 6T2 − 6� , �30�

which satisfies the consistency and stability constraints. It is
not reproducible by either quadratic or cubic polynomial,
LRE, or TRE methods. This EOS was sampled on a grid of
17
17 points centered at �0.5,0.5� with spacing �y
=2−4−k/2, k=0, . . . ,18, in each dimension to generate a table
of energy and pressure that was input to the various estima-
tion procedures operating on 5
5 grid centered at �0.5,0.5�
with spacing �y /4. The error in the estimates was measured,
and two sample results for pressure are plotted in Fig. 8. The
curves have been truncated on the left where convergence
ceased for each method. In particular, the linear methods
were the most robust �working at smaller mesh spacings�,
followed by the quadratic and cubic methods. The bicubic
hermitian method was the least robust. Table III shows the
convergence rates for the various methods coded by the au-
thor. The local regression methods converge in keeping with
the theoretical rates given in Sec. II above. The tuned regres-
sion zeroth derivatives converge at the same rates as the
quadratic local regression estimator, which is encouraging.
For zeroth derivatives the convergence is fourth order, which
is remarkable since only a quadratic polynomial is used in
the modeling. Table IV shows the ln �y=0 intercept of the
convergence curves, which gives an indication of the relative
accuracy of the various methods. The various regression
methods trade advantages in different derivatives with their
competitors of like polynomial order. The bi-Hermitian
method, as coded by the author, seems to have a markedly
higher intercept than the other cubic methods, implying that
a finer table is required to get the same accuracy as a bicubic
or cubic LRE method could get. The tuned regression esti-
mator does the best job on consistency, of course,as evi-
denced by the intercept value. The other methods all con-
verge in consistency error, as they must if they converge at
all, but unless you build consistency into the algorithm, you
cannot guarantee it.

VIII. MESH-FREE ILLUSTRATION

Finally, in Fig. 9�a�, we show the molybdenum table 2984
sampled at 21 583 random points uniformly distributed

FIG. 8. Error of various methods on analytic EOS of �25� as a
function of mesh spacing in the input table for � and consistency.
�a� Error in pressure. �b� Error in consistency measured by Eq. �12�.

TABLE III. Convergence rate for various method on biquartic EOS �30�. Linear local regression cannot
compute second derivatives accounting for vacancies in column 2. Tuned regression gets consistency to
round off, so no convergence figure appears in its column. “Bi-Herm” denotes bicubic Hermitian.

LRE1 LRE2 LRE3 TRE Bilinear Biquad Bicubic Bi-Herm

E 2 4 4 3.9 2 3 4 4.3

P 2 4 4 4.1 2 3 4 4.4

�E /�T 2 2 3.9 2 1 2 3 3.3

�P /�T 2 2 4 2 1 2 3 3.4

�E /�� 2 2 3.9 2 1 2 3.9 3.4

�P /�� 2 2 4 2 1 2 3 3.6

�2E /�T�� 2 2 2 1 2 2.9 2.2

�2P /�T�� 2 2 2 1 2 2.9 2.4

Consistency 2 2 4 1 2.1 3.1 3.4
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across the full range of temperature and density using the
log-log TRE of Sec. V with 	S= PS=−103, which flattens the
graphs of � and � compared to Fig. 3. Each point is shaded

with the value of � obtained from the TRE. These data are
then used as an input “table” for resampling at a finer uni-
form random distribution of 64 749 points, again using the
log-log TRE. The results are plotted in Fig. 9�b� and exhibit
the expected behavior. The consistency error was zero to 15
decimal places as with the other TRE examples. The signifi-
cance of the mesh-free nature of the TRE for EOS data is
that traditional rectangular-grid tables may be supplemented
with extra data points near Maxwell constructions or phase
change boundaries to achieve greater resolution near these
discontinuities with no loss of consistency or accuracy.

IX. TABLE INVERSION AND ENTROPY

A common use of thermodynamic tables is in the solution
of the equations of motion involving pressure as a function
of energy and density. Tables such as SESAME which express
pressure as functions of temperature and density must be
“inverted,” which is possible analytically because of the sta-
bility constraint CV�0. In this section we examine how such
a process can proceed with tuned regression. Suppose we
have an input grid of �Ti ,�i� upon which are defined energies
and pressures �Ei , Pi�. The set of points �Ei ,�i� with data
�Ti , Pi� can be used to interpolate T�E ,�� and P�E ,��. While
the input grid �Ti ,�i� has a Cartesian configuration, the
points �Ei ,�i� have an irregular character as shown in Fig.
10. The mesh-free nature of the LRE and TRE makes them
perfectly suited for interpolation on such point sets without
nonlinearly interpolating the table data to a new Cartesian
grid, as is typically done. A consistency condition is still
required, as before. From the second law,

� �S

�E
�

�

=
1

T�E,��
, � �S

��
�

E

= −
P�E,��

�2T�E,��
. �31�

By equating cross derivatives, this leads to the consistency
condition

�2� �T

��
�

E

+ P� �T

�E
�

�

− T� �P

�E
�

�

= 0, �32�

which may be enforced in the TRE in the same way that Eq.
�6� was enforced. Transformations to other sets of variables

TABLE IV. Extrapolated ln �y=0 intercept of convergence curves similar to those of Fig. 8. For methods
of like order of convergence, these figures indicate relative accuracy. “Bi-Herm” denotes bicubic Hermitian.

LRE1 LRE2 LRE3 TRE Bilinear Biquad Bicubic Bi-Herm

E 0.4 0.4 0.9 0.4 0.4 0.4 0 1.2

P 0.2 0.6 1 0.4 0.3 0.4 0.1 1.4

�E /�T 0.9 1 1 1 0.9 0.8 0.6 2.8

�P /�T 0.6 0.8 1.3 0.6 0.3 0.1 −0.2 3.3

�E /�� 0.6 0.8 0.8 0.9 0.6 0.3 0.1 3

�P /�� 0.8 0.7 1.5 0.7 0.9 0.9 0.7 3.2

�2E /�T�� 0.9 1.1 1.4 1.1 1.3 1.1 0.7 2.3

�2P /�T�� 0.7 1.3 1.6 1.3 1.4 1.2 1 2.9

Consistency 0.5 0.2 0.1 −15.5 0.1 −0.1 −0.3 3

FIG. 9. �a� SESAME table 2984 sampled at 21583 uniformly dis-
tributed random points using the log-log TRE. �b� Sampling of the
data from �a� at 64 749 different uniformly distributed random
points using the log-log TRE. In these examples 	S= PS=−103.
Each point is colored with the value of the interpolant.
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and thermodynamic consistency conditions can be handled
similarly.

If we were to implement such a regression scheme, it is
then possible to compute an entropy based on the original
table data. Many tables in SESAME and other libraries provide
a Helmholtz free energy from which one could compute an
entropy based on Eqs. �4� using any scheme. For those situ-
ations where the free energy is not available, however, we
first form a regression residual analogous to Eq. �15�,

R�S� = �
j

�Sj − E�S�p�x,yj��2w�x,yj� ,

E�S� = �S�E,��,
1

T�E,��
,

P�E,��
�2T�E,��� ,

x = �E,��T, yj = �Ej,� j�T, p = �1,Ej − E,� j − ��T.

�33�

The temperature and pressure are computed with the TRE
based on Eq. �32�. A problem arises, however: we do not
have any of the data Sj to put into the optimization of Eqs.
�33�. To resolve the issue we optimize

�
i

R�Si� = �
ij

�Sj − E�Si�p�xi,yj��2w�xi,yj� �34�

to obtain a global implicit set of nonlinear equations to solve
for the entropies. Such a procedure is beyond the scope of
this paper and must be the subject of future research. Solu-
tions would satisfy the thermodynamic relations �31� and
�32� to round off.

X. SOME CONSIDERATIONS

It might be questioned whether it is thermodynamically
permissable to impose �0,1=0 and �1,2=0 independently or
simultaneously in algorithm 1. From �10� we have �0,1=CV
and �1,2=1/ ��KT�, where CV is the specific heat at constant
volume and KT is the isothermal compressibility. Let CP and
KS denote the specific heat at constant pressure and isentro-
pic compressibility, respectively. From �10� we have the
identity

KS/KT = CV/CP �35�

and the alternate stability constraints

CV
−1 � CP

−1 � 0, KS
−1 � KT

−1 � 0. �36�

With T and V independent, we have

KS =
CV

CV

KT

+ V� �P

�T
�

V

�� �E

�V
�

T

+ P� �37�

and

CP = CV + VKT� �E

�V
�

T
� �P

�T
�

V

. �38�

Thus, if �0,1=0, then CV=0 and KS=0 by Eq. �37� and �35�
is satisfied for �1,2�0. If �1,2=0, then KT→� and CP→�
by Eq. �38� and �35� is satisfied if �0,1�0. If both �0,1=0
and �1,2=0, then KS=0 and CP→� and Eq. �35� is satisfied.
So it is thermodynamically legitimate to impose the stability
constraints either independently or simultaneously.

Although the numerical method described in Sec. II may
enforce the consistency and stability constraints, it is not
always correct to do so. The consistency condition �6� is
valid only for a fluid. Pressure and volume are defined for a
solid but do not provide a complete thermodynamic repre-
sentation. A solid has multiple strains that determine the ther-
modynamic state instead of a single volume for which other
consistency constraints must be satisfied �17�, and thus a
different tuned regression estimator has to be used. Thus en-
forcement of �6� in a solid region of the EOS is unrealistic.
In a rigorous implementation of a tuned regression table in-
terpolation scheme one would first want to make sure that
the consistency condition �6� is only enforced in fluid re-
gions, which requires knowledge of the phase diagram for
the material modeled.

The derivative �P /���T is zero usually only in a mixed
region corresponding to a phase change. It is therefore unre-
alistic to enforce �P /���T=0 outside of a mixed region. In a
solid this derivative can legitimately be negative �as with
ice�, and so in a solid region it may be incorrect to force it to
be zero. Again, knowledge of the phase diagram and a dif-
ferent treatment for solids are required to make a rigorous
implementation.

The specific heat CV is zero at a temperature of absolute
zero, as can be seen from the expression CV=T�S /�T�V. For
nonzero temperatures it is not realistic to enforce CV=0 as in
algorithm 1.

FIG. 10. �a� Temperature-density grid. �b� Energy-density grid.
Logarithmic transformations applied. Data from SESAME table 2984
for molybdenum.
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Nonetheless, it may be fitting to enforce the stability con-
straints �6� and �8� at points where it is physically unrealistic
as described above. For example, it has been the practice for
many decades by developers and users of simulation codes
modeling shock-wave propagation to assume that hydrostatic
stress dominates the shear components of the stress deviator
tensor in a solid under the influence of high explosives or
hypervelocity impact, so that even though an equation of
state may contain a solid region, it is used as if it were
representing only a fluid �10�. The objective is then to obtain
derivatives of quantities such as pressure and energy under
this equivalent fluid approximation even though the equation
of state may well represent solid material. This is routinely
done, for example, when computing a sound speed for use in
satisfying a Courant stability condition. Therefore in practice
derivatives are taken across solid-liquid as well as liquid-gas
phase boundaries, where an EOS table may have explicit or
apparent discontinuities of various orders. Explicit disconti-
nuities of slope �kinks� occur at phase boundaries according
the relations �10�

c2 − cm
2

cm
2 =

� − �m

�m
= ��g − �2��T

V
� dS

dP
�

sat
� � 0,

� − �

�
=

� − �m

�m
, � =

V

P
�dP

dV
�

sat
, �39�

where the notation dX /dY�sat means the slope of the satura-
tion boundary and the subscript m denotes evaluation in the
mixed region. A rigorous implementation would use another
tuned regression estimator to enforce these relations at phase
boundaries, which represent discontinuities of the first de-
rivatives of the EOS. Maxwell constructions in the table de-
signed to eliminate negative �P /���T also introduce kinks.
An apparent discontinuity occurs when the continuous func-
tion that the table samples makes a transition that occurs in
less space than the width of adjacent data points in the table.
If the table had been created with a finer mesh, the apparent
discontinuity would seem like a smooth transition. Some
tables may also have erroneous explicit discontinuities at
table boundaries �cliffs�, caused by arbitrarily setting quanti-
ties to zero at T=0, for example.

Regardless of whether the table discontinuities are ex-
plicit, apparent, or erroneous, polynomial approximations to
EOS functions across them can sustain unphysical oscilla-
tions whose derivatives grow exponentially with the order of
derivative and the order of the polynomial and violate the
stability constraints for purely numerical reasons. In such
situations it is imperative to control these oscillations to re-
store thermodynamic fidelity without sacrificing accuracy, as
when evaluating the fundamental derivative G, for example.
The tuned regression method does this in a manner reminis-
cent of that of monotone slope limiters used in high-
resolution methods for fluid flow �4,5�. In the enforcement of
the stability constraints, it limits the amplitude of the oscil-
lations so that the result is thermodynamically acceptable: no
negative bulk modulus or specific heat. If the table is at fault,
the best approach is to correct it or add more resolution, but
few table users have the knowledge or ability to generate a

new table, so as a practical matter it is imperative to seek
numerical methods for table interpolation that get as much
information as possible from the available table data without
violating thermodynamic constraints. The tuned regression
method fills this role by finding the optimal local polynomial
fit to nearby data that satisfies the constraints.

The tuned regression method results in derivatives that
match the thermodynamic constraints, but it will be less ac-
curate than a method that has no such constraints if applied
to an EOS which does not satisfy the constraints because it is
trying to force specific behavior of derivatives on a function
for which it is inappropriate. A tuned regression estimator is
only good for data that are sampled from a function whose
behavior at least roughly matches the differential constraints
it was designed to satisfy.

Why compute and adjust separate estimates of derivatives
instead of “simply” taking derivatives of an estimate? For
data sets sampling a smooth function this is natural and ef-
fective. For data sets sampling functions discontinuous in
either the zeroth or first derivatives the fact that polynomial
interpolants frequently produce large oscillations near dis-
continuities forces us to reconsider.

The problem of EOS table interpolation is to construct
functions and derivatives from a finite number of data points,
for which there is no unique solution. Consider an approxi-

mate function P̃�T ,�� interpolating pressure from table data
on a regular grid. One can add the function

��T,�� = 	 sin�2�k

�T
T�sin�2�k

��
��

to P for k an arbitrary integer and 	 arbitrary but small
enough and still have an approximation to the pressure every

bit as accurate as P̃ and which matches the data exactly on

the grid points, but the �n1 ,n2�th derivative of P̃+� will have
oscillations of size 	�2�k /�T�n1�2�k /���n2 which can be
arbitrarily large. Polynomial interpolants develop oscillations
near discontinuities that also grow exponentially with the
order of the polynomial and the order of derivative. Clearly,
it is not always best to estimate derivatives by explicit dif-
ferentiation, for the behavior of the derivatives is not easily
controlled.

If one were to try to define a continuous function to esti-
mate pressure and energy from the table data and apply the
consistency and stability constraints to its derivatives, it
would likely be much more expensive to solve than the tuned
regression technique outlined above, involving a continuous
solution to a possibly nonlinear system of partial differential
equations �the consistency condition plus a regularization
condition, which is needed because solutions of the consis-
tency condition are not unique� and boundary conditions �the
stability and boundedness conditions� at each evaluation and
table point. The tuned regression technique avoids this ex-
pense by approximating the derivative at any point as the
coefficient of the linear or quadratic term in a polynomial
that optimally fits nearby data, much the same as the notion
of a Frechet derivative in real analysis, which is identical to
the familiar Leibnitz difference quotient definition for real-
valued functions. The set of continuous coefficients defines
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continuous approximations to a finite number of derivatives.
We are trading a finite number of conditions on an infinite
number of derivatives of a single function for a finite number
of conditions on a finite number of functions. The former
creates a difficult nonlocal problem, while the latter creates a
simple local problem.

One could obtain the consistency condition by interpolat-
ing a tabular free energy where provided and taking explicit
derivatives. All the consistency conditions would be auto-
matically satisfied, but the stability constraints would now
involve second derivatives and the computation of G would
require third derivatives of the free energy. These would os-
cillate more strongly near discontinuities than first and sec-
ond derivatives of tabular values of pressure and energy,
which nominally are derived from explicit derivatives of the
analytic functions used in modeling the EOS. Ensuring the
stability conditions on a continuous interpolant would be-
come more difficult. The errors would also be larger because
of the generic loss of accuracy with derivative order in
polynomial-based interpolants, including tuned and local re-
gression. Furthermore, getting good third derivatives is more
expensive and less robust in general because the condition
number of the matrix inversions involved generally goes up
rapidly with polynomial interpolant order.

XI. CONCLUSION

We have shown that traditional numerical derivatives of
equation-of-state tables do not simultaneously satisfy the

thermodynamic consistency and stability conditions and that
a tractable method to compute them can be developed from
the tuned regression estimator. The LORELI implementation
has demonstrated the reproducing property for quadratic ana-
lytic EOS which satisfy the consistency and stability condi-
tions. Trials on a few SESAME tables have shown that the
consistency and stability constraints can be simultaneously
enforced to round off without sacrificing accuracy and that
theoretical values for � and G are approached at high tem-
perature. Versions of the theory and software were developed
for flat, semilogarithmic, and log-log coordinates, the last
being necessary to handle tables with exponential grids. The
convergence rates follow those of the statistical local regres-
sion estimator, giving fourth order for zeroth derivatives and
second order for first and second derivatives. The TRE
method is apparently much more expensive than traditional
derivatives, however. The construction of tables of deriva-
tives could mitigate this problem. The mesh-free character of
the TRE method was convincingly demonstrated and pro-
vides a basis for augmenting conventional tables with extra
data points near physical discontinuities. There are outstand-
ing issues regarding phase boundaries, Maxwell construc-
tions, and table-edge drop-offs which require further research
before the technique can be made into a fully robust tool.

APPENDIX: RESIDUAL EXPRESSIONS

The residual for the consistency constraint given in �20a�
is

W11

2
+

W22

2
+ �0�− U11 +

P11�0

2
+ P12�1 + P13�2 + P14�3 + P15�4 + P16�5� + �1�− U12 +

P22�1

2
+ P23�2 + P24�3

+ P25�4 + P26�5� + �3�− U14 +
P44�3

2
+ P45�4 + P46�5� + �4�− U15 +

P55�4

2
+ P56�5� + �5�P66�5

2
− U16�

+ �2�− U21�
2 + P13�7�2 + P14�8�2 + P15�9�2 + P16�10�

2 − U13 + �P11�
4

2
+

P33

2
��2 + P34�3� + �P35�4 + P36�5

+ �TP11�
2 + P12�

2��6� + �6�− TU21 − U22 + �P11T
2

2
+ P12T +

P22

2
��6� + ��TP13 + P23��7 + �TP14 + P24��8 + �TP15 + P25��9

+ �TP16 + P26��10� + �7�− U23 +
P33�7

2
+ P34�8 + P35�9 + P36�10� + �8�− U24 +

P44�8

2
+ P45�9 + P46�10�

+ �9�− U25 +
P55�9

2
+ P36�10� + �10�P66�10

2
− U26� , �A1�

with

E = � �0 �1 �2 �3 �4 �5

�2�2 + T�6 �6 �7 �8 �9 �10
� . �A2�

The residual for the constraints �20a� and �20b� active is
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W11

2
+

W22

2
+ �0�− U11 +

P11�0

2
+ P13�1 + P14�2 + P15�3 + P16�4� + �2�− U14 +

P44�2

2
+ P45�3 + P46�4�

+ �3�− U15 +
P55�3

2
+ P56�4� + �4�P66�4

2
− U16� + �1�− U21�

2 + P13�6�2 + P14�7�2 + P15�8�2 + P16�9�2 − U13

+ �P11�
4

2
+

P33

2
��1 + P34�2� + P35�3 + P36�4 + �TP11�

2 + P12�
2��5 + �5�− TU21 − U22 + �P11T

2

2
+ P12T +

P22

2
��5

+ �TP13 + P23��6 + �TP14 + P24��7 + �TP15 + P25��8 + �TP16 + P26��9� + �6�− U23 +
P33�6

2
+ P34�7 + P35�8 + P36�9�

+ �7�− U24 +
P44�7

2
+ P45�8 + P46�9� + �8�− U25 +

P55�8

2
+ P56�9� + �9�P66�9

2
− U26� , �A3�

with

E = � �0 0 �1 �2 �3 �4

�1�2 + T�5 �5 �6 �7 �8 �9
� . �A4�

The residual for the constraints �20a� and �20c� active is

W11

2
+

W22

2
+ �0�− U11 +

P11�0

2
+ P12�1 + P13�2 + P14�3 + P15�4 + P16�5� + �1�− U12 +

P22�1

2
+ P23�2 + P24�3

+ P25�4 + P26�5� + �3�− U14 +
P44�3

2
+ P45�4 + P46�5� + �4�− U15 +

P55�4

2
+ P56�5� + �5�P66�5

2
− U16�

+ �2�− U21�
2 + P14�7�2 + P15�8�2 + P16�9�2 − U13 + �P11�

4

2
+

P33

2
��2 + P34�3 + P35�4 + P36�5 + �TP11�

2 + P12�
2��6�

+ �6�− TU21 − U22 + �P11T
2

2
+ P12T +

P22

2
��6 + �TP14 + P24��7 + �TP15 + P25��8 + �TP16 + P26��9�

+ �7�− U24 +
P44�7

2
+ P45�8 + P46�9� + �8�− U25 +

P55�8

2
+ P56�9� + �9�P66�9

2
− U26� , �A5�

with

E = � �0 �1 �2 �3 �4 �5

�2�2 + T�6 �6 0 �7 �8 �9
� . �A6�

The residual for the constraints �20a�–�20c� active is

W11

2
+

W22

2
+ �0�− U11 +

P11�0

2
+ P13�1 + P14�2 + P15�3 + P16�4� + �2�− U14 +

P44�2

2
+ P45�3 + P46�4� + �3�− U15 +

P55�3

2

+ P56�4� + �4�P66�4

2
− U16� + �1�− U21�

2 + P14�6�2 + P15�7�2 + P16�8�2 − U13 + �P11�
4

2
+

P33

2
��1� + �P34�2 + P35�3

+ P36�4 + �TP11�
2 + P12�

2��5� + �5�− TU21 − U22 + �P11T
2

2
+ P12T +

P22

2
��5 + �TP14 + P24��6 + �TP15 + P25��7 + �TP16

+ P26��8� + �6�− U24 +
P44�6

2
+ P45�7 + P46�8� + �7�− U25 +

P55�7

2
+ P56�8� + �8�P66�8

2
− U26� , �A7�

with

E = � �0 0 �1 �2 �3 �4

�1�2 + T�5 �5 0 �6 �7 �8
� . �A8�
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